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Hartmann flow in an annular channel 

By L. TODD 
Department of Mathematics, Massachusetts Institute of Technologyt 

(Received 5 April 1966 and in revised form 18 October 1966) 

Flow at high Hartmann number along the annular channel between two non- 
conducting cylinders of circular cross-section is examined. The core is divided 
and wakes appear at  the boundaries of the various regions. In  $9 1-4 the case in 
which the cylinders are concentric is studied. In  $ 5  the cylinders are eccentric, 
and it is shown that in this case there is a net flow of current around the annulus. 

1. Introduction 
The problem of pressure-driven flow of conducting fluid through an insulating 

pipe of circular cross-section in the presence of a transverse magnetic field has 
been analysed by Shercliff (1956, 1962) and Gold (1962). The exact solution may 
be obtained in the form of an infinite series, from which useful information may 
be extracted numerically. At high Hartmann number, however, a boundary 
layer analysis is more illuminating, and indicates that there are essentially three 
r6gimes in the flow: a core in which the velocity is uniform, a Hartmann layer on 
the boundary, and ‘obscure regions’ in the neighbourhood of the points on the 
boundary where the applied field is tangential to the pipe. 

In  this paper Shercliff’s high Hartmann number analysis is extended to the 
case of pressure-driven flow through the annular channel between two insulating 
cylinders of circular cross-section. The equations that describe the flow are the 
linear equations first derived by Shercliff (1953); only the boundary conditions 
are changed. It has been observed by Uflyand (1961) that, when the cylinders 
are concentric, the exact solution may again be obtained in the form of an infinite 
series. For large Hartmann number, however, the series converges extremely 
slowly, and its usefulness is questionable. Hence it seems worthwhile to exploit 
boundary-layer techniques in order to obtain the main properties of the solution 
in this limit. 

Several interesting features emerge from the analysis; in particular, the core 
flow is divided (see figure 8) by transition regions (or, loosely, ‘wakes’) in the 
neighbourhood of the planes parallel to the applied field B, and tangential to the 
inner cylinder. These wakes are of a type first analysed by Hasimoto (1960) in a) 
treatment of the flow generated by the motion of a cylinder parallel to its gener- 
ators in a fluid of infinite extent. (The work of the present paper can easily be 
extended to allow for steady motion of the inner cylinder parallel to its axis.) 

t Present address : Department of Mathematics, Strathclyde University, Glasgow C. 1. 
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2. The governing equations and boundary conditions 

magnetic field (Shercliff 1953) are 
The governing equations for unidirectional flow in a transverse applied 

(1) 
av, 

oax 
AVzB,+ B - = 0,  

The notation is standard; B = (B,,O, B,), where B, is the (constant) applied 
magnetic field, - P = 8pla.z = constant, and h and v are the magnetic and shear 
diffusivities respectively. The third equation indicates the absence of forces tend- 
ing to move the fluid across the pipe. &B, is the vector potential for the current 
density vector. In  our geometry this means that B, is the stream function for 
current, i.e. current flows along the lines B, = constant. 

FIGURE 1. The rotation for concentric cylinders. 

Consider the case of pressure-driven flow through the annular channel be- 
tween the concentric cylinders r = u, b(b > a). 
Let 

q = P((pvn)tB,)-l, s = p-l(npv)-By f4)Y ( 5 )  

m = V,+(qx+sB,), n = V,-(qx+sB,), (619 (7) 

and 2/3 = B,(n/pv)* (the Hartmann wave number). Equations (1) and (2) then 
become 

am an 
VZm+2/3- ax = 0,  V2n-2,13- ax = 0. (81, (9) 

The velocity V,  must vanish at the boundaries. B, may be assumed to vanish 
at  Y = b. At r = a the radial current must vanish and this requires 

B, = constant = C (say). 



HartmannJEow in an annular channel 373 

The value of B, within the inner cylinder is also C, since there VzBe = 0. Moreover, 
since curl E = - (aB/at) = 0 under steady conditions, it follows that 

/oznEe(a, 8)dO = 0, and as j, = (CEO) at r = a+,  

this boundary condition may be written (Hasimoto 1960) I:(%) ae=o.  
?-=a+ 

3. The value of B, at the inner cylinder 
It follows from pj = curl B that (Bz)r=a = C = p1, where I is the net amount 

of current flowing around the annulus per unit length. It will now be shown that 
the symmetry about the y-axis implies that I = 0. This is done by separating the 
linear problem (l), (2) into two parts. The solutions will be added together and 
then the boundary condition (10) will be applied. 

(i) First, suppose that equations (1) and (2) are solved subject to the boundary 

conditions V,=O=B, on r = a  and r = b .  

The solution obviously has the property B,(x) = - B,( - x) and it follows that 
equation (10) is satisfied. 

(ii) Secondly, suppose that the equations 

are solved, subject to the boundary conditions 

V , = O  at r = a , b ;  B,=O at r = b ;  

B, = C (constant) a t  r = a. 
Since the condition (10) is satisfied by the solution of problem (i), the solution of 
(ii) must also satisfy ( lo) ,  in order that the sum of the two solutions is the solution 
to the problem set out in $2. From equations (11) and (12), 

where S is the area of the annulus between r = a and r = b. The third form in this 
integral is obviously zero; moreover 

since V,  = 0 at the boundaries, and 

using (10). It follows that VB, = 0 and VV, = 0. Since B, =- 0 a t  r = b, it follows 
that G = 0, and hence that I = 0. 
This result depends only on symmetry about the y-axis. Thus, it is true for any 

number of cylinders of any cross-section, provided that the outer one and all the 
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inner ones have this symmetry. When this condition is not met, the determina- 
tion of the value of B, a t  each of the inner cylinders is more complicated. With 
very little modification, the analysis for problem (b) will show that the solution 
for such Hartmann flows is unique. 

4. The flow at large Hartmann number 
The flow in the case of concentric circular cylinders depends on the Hartmann 

and on the geometrical parameter dla (d  = b - a).  We investigate the asymptotic 
nature of the flow as M + m  under the assumption that d/a  = O(1). [If 
d/a = O(M-l) ,  for example, then the results obtained below are invalid.]? 

number N = B,(cr/pv)*a (13) 

E 

FIGVRE 2. The boundary-layer co-ordinates. 

We shall seek core solutions, together with thin Hartmann boundary layers on 
the walls. This approach was used by Shercliff (1956) for flow through a circular 
cylinder. It is valid provided M 2 1. However, we shall find wakes near (31 = a. 
In  order to discuss these, it is necessary that 

M * $ l .  (14) 

(i) Hartmann boundary layers at the walls 
The boundary-layer co-ordinates (c,  5 )  are shown in figure 2. 5 measures distance 
along the inward radius. (c, 5, x )  form a right-handed set of Cartesian co-ordinates. 
Equation (8) now becomes 

am am 
-McosB--MsinO- = 0. 

a5 at 
Following Shercliff (1956) we seek boundary-layer solutions, near the walls, in 
which a/a< B a/& Thus, provided we are not ‘too near’ 101 = (+n), equation (15) 
can be approximated by 

8% am 
a--McosO- = 0, ac2 a5 

with solution m = mcore + C, exp { (cos 0) N~a- l } ,  (17) 
t C. J. Apelt (private communication) has analysed the problem numerically in the 

range 0 < M 5 25 for both concentric and eccentric cylinders and his results are 
consistent with the analysis of this paper for M 2 5. 
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where mcore and C1 are possibly functions of 6. It follows that m has boundary 
layers only on that portion of the outer wall for which cos8 < 0, g 2 0. On the 
right-hand part of the outer wall, m does not have a boundary layer and thus 
equation (16) does not apply there. Similarly, equations (16) and (17) only apply 
near that portion of the inner boundary where cos 8 > 0 and 5 < 0. These results 
are illustrated in figure 3 (a). In the boundary-layer co-ordinates, equation (9) is 

FIGURE 3. The boundary layers. 

To the above approximation, equation (18) becomes 

a2n an 
a-++Mcos8- = 0, ac2 a< 

with solution 

where nCore and C, may be functions of t. It follows that n has boundary layers as 
indicated in figure 3 (b )  and that equations (19) and (20)  are valid only in these 
regions. 

Let us now find out at what value of 161 the theory breaks down. Now, since 
a/a[ = r-'(a/a8), mcore, ncore and C1,C2 may all vary with 6. However, it will be 
shown at a later stage that, in every case of interest in this paper, the order? of 
magnitude of the [-derivative is given by treating the four latter quantities as 
constants. One of the neglected terms, (Msin 6(a/a$)), becomes of the same order 
.as the two retained terms in (15) or (18), at values of 181 near in for which 

n = n,,,, -I- C2 exp { - (cos 8)  Mga-l), (20) 

i.e. 

'The width of the boundary layer at the edge of the region indicated by (22) is of 
order rM-8 on the two cylinders r = a, b (see figure 4). 

t Hereafter we shall me the symbol N to mean 'of the order of'. 
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(ii) The core solutions 
Let us now examine conditions outside the boundary layers. The region IyI > a 
may be described as the outer core. In  the left inner core, [y (  < a and x < 0, 
and in the right inner core, IyI < a and x > 0. The values of m and n in these 
regions are labelled by the sufices 0, L and R, respectively. 

I I 

y-- O w f - 9  -4 - Bo 

FIGURE 4. The obscure region on the outer cylinder near 0 = + (in). 

On the right-hand side of the outer wall, m = q(b2 - y2)* and there is no bouna- 
ary layer. It is reasonable to assume that at points near to this boundary the 
length scale of variation in the y-direction, L,, is determined by the value of m 
at the wall, i.e. 

Thus, provided we are not too near, [yI = b, L, N b (or greater). Now 

(23) L, N (b2-y2)y--1. 

a2m 8% am ( ay2 ax2) ax 
a-+- -  + M - - 0 ,  

so that L, N bM (or greater), i.e., to highest order, there is no x-variation of m. 
This suggests that, for the outer core and right inner core, we seek an expansion 
of the form 

m = q(b2 - y2)i +fl(x, y P - 1  +f2(x, Y ) M - ~  + . . . . 
It can easilyibe shown that 

mR = mo = q(b2 - y2)t + qb2aM-1{x(b2 - y2)-8 - l} (b2-  y2)-l + O(mM-2). (24) 

Equation (24) is not valid for the left inner core, since L, in this region is derived 
from the behaviour of m on the left-hand wall of the inner cylinder. On this 
boundary, m = -q(a2-y2)*. Thus, except near 191 = a, L, N (a2-y2)y-1 N a (or 
greater), so that L, N aM (or greater). Consequently, we obtain the expansion 

mL = - q(u2 - y2)t - qa3M-1{x(u2 - y2)-i f l} (a2 - y2)-l + O(mM-2), (25)  

for the left inner core. 
Now,mo =+ m, at  IyI = a. In  fact to highest orderm,-m, = q(b2- a2)i = con- 

stant, at  IyI = a. It is therefore to be expected that there will be two ‘wakes’, 
one centred a t  y = +a and one a t  y = -a. This is illustrated in figure 5(a).  
These wakes are discussed in 8 4 (iv). 
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In  a similar way we obtain an expansion for n, which is valid in the outer and 
left inner core, 

nL = no = q(b2 - y2)t - qb2aM-l(x(b2- y2)-+ + I} ( b 2 -  y2)-1+ o(%M-~).  (2s) 

In the right inner core, L, is derived from the behaviour of n on the right-hand 
boundary of the inner cylinder. Consequently, we obtain 

nR = -q(U2-y2))+qUaM-1{~(~2-y2)-a- 1}(a2-@)-1+ O(%N-2). (27) - 8 0  

(b)  n 
m (a) 

FIGURE 5. The transition regions, or ‘wakes’. 

We now determine where our core expansions will not be valid. The cases for 
m and n are quite similar. We will first consider the expansion for m in the outer 
and right inner core. The second term becomes of the same order of magnitude 
as the leading term where 

(b -  l t ~ l )  - bM-8. (28) 

It can easily be checked that, at values of y satisfying (28), the length scale in the 
x-direction becomes of the same order as the local width of the duct. This is why 
the above expansion procedure breaks down. The expansion for n in the outer 
and left inner core breaks down at  the same place. The fist and second terms in 
the two remaining (inner) core expansions become of the same order of magnitude 
where 

(a-  lYl)  - (alxllJw. (29) 

Again, this result is easy to understand. The length scale in the x-direction de- 
creases to zero as IyI +a. Thus the section of the flow to which the Taylor series 
expansions (about the inner wall) apply is bounded as set out in (29). 

The values of V,  and B, in each of the core regions are given below. V ,  is even in 
x and y. B, is odd in x and even in y. 

Outer core 



(iii) The obscure regions, near 8 = &, on the outer cylinder 

The results of the last section and the fact that m = n = 0 on the walls, give the 
valuesof mcore, ncore, Cl and C,. The assumption made in 8 4 (i) can then be verified. 
Thus the boundary-layer theory breaks down a t  precisely the same place as the 

Matching region 

- -_---  

Wake 

Matching region 

- - - - - - -I/ - -_---  
O ( ~ C L ~ M - ~ )  

FIGURE 6. The obscure region, for m, on the inner cylinder near 0 = +T. 

outer core expansion. This leaves an obscure regiont of extent b M 4 ,  and the 
height b M 3 ,  as shown in figure 4. Though m and n have boundary layers on only 
one side of the outer wall, the physical quantities V ,  and B, have boundary layers 
on both sides. The value of V ,  a t  the edge of the obscure region can be estimated 
from equation (30), it is O(qb2Ma). Thus &,, the contribution to the flow rate 
from the obscure region, is of order 

Q, - qb3 M-4. (33) 

(iv) The wakes and the obscure regions on the inner cylinders 

The ‘wakes’ might equally be called shear layers or transition layers. We will 
restrict the discussion to the behaviour of m. The analogous results for n will be 
stated at the end of the section. As was noted in the previous section, the 
boundary layer breaks down as given in $4(i). This is illustrated in figure 6. 

t The results concerning the extent and thickness of the obscure region were f i ra t  
obtained by T. Waechter (private communication) in the closely related problem of the 
steady motion of a cylinder parallel to its axis (Hasimoto 1960) by rigorous asymptotic 
expansion of the exact solution. 
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Within the wakes we expect that a/ay $D a/ax. Thus equation ( 8 )  becomes, to 

Wake 

highest order, a2m am 
aY2 ax 

a-+M- = 0. 

The appropriate similarity solution (cf. Hasimoto 1960) is 

m =  I 2 d  b2-a2 P(1 +erf(a)}, 

where a = M+(lyl -a)(4lxla}-t. 

Matching region 1 Core 

(34) 

(35) 

(36) 

The centre of the wake is only known to within O(aM-+}. Since the boundary 
layer has a thickness of order aM-3 at its breakdown point (see figure 6), the wake 
emanates from a point where 1x1 N a M 4 .  The theory requires that the maximum 

I 

I 
a0 

, 
I 

2a0 

FIGURE 7. The profile of rn in the matching region. 

extent of the wake is small compared to a, i.e. we must have M i  $D 1. Lastly, the 
boundary-layer theory is still valid where the wake meets the outer cylinder 

Let us now examine how the wake and inner core solutions merge. Equation 
(29) shows that the inner core expansion is mathematically valid for -a $ 1, i.e. 
at  the lower edge of the wake. At any given value of (a -  lyl) the order of magni- 
tude of (amlay), according to  the wake and core solutions, will differ. However, 
where 

(a-  lyl) = aa,(x)M-t, 

they are of the same order of magnitude, a, being defined by 

since (a/aE)wake B (a/aC),. layer. 

(37) 

exp{ag) = 1Mx/alfa$. (38) 

At a = a,, ]mwakeI < ImLI. Furthermore, for a;,- a,, -mL is of order 

(am,/ay)aa, M-4. 

This suggests that the wake solution and the core expansion match up over a 
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region with width of order uaoM-4 (see figures 6, 7). For most of the wake 
1x1 N a, and 

Equations (37) and (38) give the upper boundary of the matching region. This 
meets the inner cylinder where 

a0 = a1 (say) = +(log Jw + O@og (1% M)l/[(log M)tI}. (39) 

(u- lyl) N ua,M-% (see figure 6), (40) 

(41) with 

We will take equations (40) and (41) as defining the left-hand edge of the obscure 
region on the inner cylinder (see figure 6). 

In  0 4 (v) an estimate of the flow rate is derived. An error will arise since we can 
estimate m only in the left-hand (inner core) matching regions and n only in the 
right-hand ones. This error is of order qa3 (log M))M-P. The flow rate through the 
two obscure regions on the inner cylinder is of smaller magnitude. There will, of 
course, be a matching region a t  the outer edge of the wake. However, it  may be 
verified without difficulty that the error term associated with this region is of 
smaller magnitude than that given above. 

a2 = 3-8 (log M)* + O(l0g (log M)/(log M)+}. 

Now n does not change across the left-hand wakes. Thus 

(42) } 

1 

V ,  = ~q(bZ-u2)3(3+erf(a)}, 

B, = -~~P~B,-2-l(b2-u2)gpPB,(1 -erf (a)}; 

in the right-hand wakes 

(43) 
V ,  = aq(bz-a2)t(3+erf(a)}, 

B, = - C G P ~ B ~ + ~ - ~ ( ~ ~ - U ~ ) B ~ P B ~ ( ~  -erf (a)). 

A qualitative picture of the current lines is given in figure 8. The velocity distri- 
bution (figure 9) is quite novel. The velocity drops by 50% across the wake. 
This is because the boundary-layer current is split between the two cylinders for 
IYI <a.  

(v) TheJlow rate 

We can now estimate the flow rate &. The dominant contribution QA comes from 
the core regions. The contribution from the wakes vanishes from symmetry con- 
siderations. The h s t  non-vanishing correction comes from the matching regions, 
joining the wakes and the inner cores. Hence, 

Q = Q A { ~  + O({logJf}PJf-P)}, (44) 
where QA = 4 p q ~ ~ ( b z - - y 2 ) d y f 2 p q ~ a { ( ~ 2 - - y 2 ) t - -  (a2-y2)4}2dy i 

1 0 

= (Pb4/~M)(86/3){l +4-1(1-62)(2K(6)-36)-2-1(1 +62)E(6)}, (45) 

where S = (a/b). R and E are complete elliptic integrals of the iht and second 
kind, respectively. (vQA/Pb4)1M is plotted against (a/b) in figure 10. The flow 
rate, Qo, for the case B = 0 (see, for example, Lamb 1945) is also plotted for com- 
parison. Shercliff (1962) considered the expansion for the case of no inner cylinder. 
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FIUURF, 8. A qualitative picture of the current flow (the dashed lines denote the boundaxtries 
of the wakes). 

- Bo 

A B A' A 
(b)  on A'A and B'2 

FIGURE 9. Some velocity profiles at high Hartmamn numbers. 

(a) on A B  and A ' B  
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Because of the relatively small contribution from the obscure regions on the 
outer cylinder, Shercliff was able to obtain a correction term of order QM-I. 
This is not possible in the present problem. 

t 

(a lb) 

FIGURE 10. The flow rate at high Hartma-nn numbers (the flow rate, Q,,, for the case B = 0, 
is plotted for comparison). 

5. High Hartmann number flow between eccentric cylinders of 
circular cross-section 

Consider now the case of two eccentric circular cylinders (figure 11), the outer 
one being situated at  r = b. The inner cylinder has radius a and is centred at (7, E ) ,  

where {b -a  5 (y2 -I- e2)*} N a. The other remarks made at the beginning of tj 4, 
apply here also. Our main purpose in this section is to demonstrate that, for 
y + 0,  there is a net flow of current around the annulus. For this purpose, we 
need only consider the zero order solution (corresponding to M = co) in the various 
regions. The (zero order) solution, for the case y = 0,  is denoted by the super- 
script ' O ' ,  e.g. m,". The (constant) value of B, a t  the inner cylinder C is as yet un- 
known. It will be found by applying the condition (10) at a later stage. 

The outer core soIution is 

m,=m;, n,=n; and E = EO. 

In the right inner core 

m, = mk, nR = nh-(py+sC),) 

E = Eo + ~ ( s C  + p7)Bo 3, (47) 
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and in the left inner core, 

383 

(48) 

FIGURE 11. A qualitative picture of the current flow (eccentric cylinders). 

Let us now apply condition (lo), i.e. E .dl = 0, where L is any closed contour 

lying within the outer cylinder and enclosing the inner one. It is convenient to 
take L as some rectangle whose sides are parallel to (Ox, Oy) and whose sides lie 
entirely in the core regions (except where two of them pass perpendicularly 
through the wakes). Now, considering only core contributions, 

P L  

r r f a  

0 = 9 E . d l =  EO.dlt2J Bo(sC+qy)dy. 
L L -a 

n 

As shown in $ 2 ,  fLE0.dl = 0. 

Thus Q = -qys-l= 0 Y- (49) 

The next order correction to (49) would normally come from considering the part 
of the path which lies in the wakes. In fact this contribution is identically zero, 
just as the 'wake term' in equation (44) is zero. 
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The value of C found above means that, to lowest order the core solutions 
(equations (46), (47) and (48)) are unaffected by the sideways displacement y. 
Thus the flow rate, to the order found in 0 4 (v), is unchanged from the case y = 0. 
However, there is a qualitative change in the current distribution (see figure 11). 
This fact is easy to explain. As Shercliff (1956) has pointed out, the core velocity 
is proportional to the boundary-layer current. Thus these currents must be the 
same as for the case y = 0. The excess current flowing up through the wider side 
of the core is (PyIB,,). This splits equally between the boundary layers on the 
opposite walls as indicated in figure 11, thereby offsetting the current deficit 
on that side. The wake solutions are the same as in the case y = 0. 

Clearly, the above analysis may be extended in a straightforward manner to 
the case of two (or more) cylinders of arbitrary cross-sections. 

-Bo 
FIGURE 12. Another interesting cross-section for large Hartmann number flow. 

6. Remarks 
It would be of considerable interest to investigate the onset of turbulence in 

these flows, especially in view of the very novel velocity profiles (figure 9). The 
type of core division found in this paper will also occur for flow through a single 
cylinder with cross-section like that shown in figure 12. In  the case of concentric 
cylinders, no wakes are present if the inner cylinder moves longitudinally with 
velocity q(b2- a2)i 2-12. Similarly, with cylinders of any cross-section the wakes 
can be eliminated by moving the inner cylinders with appropriate velocities. 

The constructive comments of the referees and of Dr H. K. Moffatt are grate- 
fully acknowledged. 
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